skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buchmann, Nina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Forests in Europe experienced record-breaking dry conditions during the summer of 2022. The direction in which various forest types respond to climate extremes during their growing season is contingent upon an array of internal and external factors. These factors include the extent and severity of the extreme conditions and the tree ecophysiological characteristics adapted to environmental cues, which exhibit significant regional variations. In this study, we aimed to (1) quantify the extent and severity of the extreme soil and atmospheric dryness in 2022 in comparison to the two most extreme years in the past (2003 and 2018), (2) quantify the response of different forest types to atmospheric and soil dryness in terms of canopy browning and photosynthesis, and (3) relate the functional characteristics of the forests to the emerging responses observed remotely at the canopy level. For this purpose, we used spatial meteorological datasets between 2000 and 2022 to identify conditions with extreme soil and atmospheric dryness. We used the near-infrared reflectance of vegetation (NIRv), derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the global OCO-2 solar-induced fluorescence (GOSIF) as an observational proxy for ecosystem gross productivity to quantify the response of forests at the canopy level. In summer 2022, southern regions of Europe experienced exceptionally pronounced atmospheric and soil dryness. These extreme conditions resulted in a 30 % more widespread decline in GOSIF across forests compared to the drought of 2018 and 60 % more widespread decline compared to the drought of 2003. Although the atmospheric and soil drought scores were more extensive and severe (indicated by a larger observed maximum z score) in 2018 compared to 2022, the negative impact on forests, as indicated by declined GOSIF, was significantly larger in 2022. Different forest types were affected to varying degrees by the extreme conditions in 2022. Deciduous broadleaf forests were the most negatively impacted due to the extent and severity of the drought within their distribution range. In contrast, areas dominated by evergreen needleleaf forest (ENF) in northern Europe experienced a positive soil moisture (SM) anomaly and minimal negative vapour pressure deficit (VPD) in 2022. These conditions led to enhanced canopy greening and stronger solar-induced fluorescence (SIF) signals, benefiting from the warming. The higher degree of canopy damage in 2022, despite less extreme conditions, highlights the evident vulnerability of European forests to future droughts. 
    more » « less
  2. na (Ed.)
    Abstract Global warming increases ecosystem respiration (ER), creating a positive carbon-climate feedback. Thermal acclimation, the direct responses of biological communities to reduce the effects of temperature changes on respiration rates, is a critical mechanism that compensates for warming-induced ER increases and dampens this positive feedback. However, the extent and effects of this mechanism across diverse ecosystems remain unclear. By analyzing CO2 flux data from 93 eddy covariance sites worldwide, we observed thermal acclimation at 84 % of the sites. If sustained, thermal acclimation could reduce projected warming-induced nighttime ER increases by at least 25 % across most climate zones by 2041-2060. Strong thermal acclimation is particularly evident in ecosystems at high elevation, with low-carbon-content soils, and within tundra, semi-arid, and warm-summer Mediterranean climates, supporting the hypothesis that extreme environments favor the evolution of greater acclimation potential. Moreover, ecosystems with dense vegetation and high productivity such as humid tropical and subtropical forests generally exhibit strong thermal acclimation, suggesting that regions with substantial CO2 uptake may continue to serve as strong carbon sinks. Conversely, some ecosystems in cold continental climates show signs of enhancing thermal responses, the opposite of thermal acclimation, which could exacerbate carbon losses as climate warms. Our study underscores the widespread yet climate-specific patterns of thermal acclimation in global terrestrial ER, emphasizing the need to incorporate these patterns into Earth System Models for more accurate carbon-climate feedback projections. 
    more » « less
  3. Abstract Fundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories – the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis – are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections. 
    more » « less
  4. Abstract. Mapping in situ eddy covariance measurements of terrestrial land–atmosphere fluxes to the globe is a key method for diagnosing the Earth system from a data-driven perspective. We describe the first global products (called X-BASE) from a newly implemented upscaling framework, FLUXCOM-X, representing an advancement from the previous generation of FLUXCOM products in terms of flexibility and technical capabilities. The X-BASE products are comprised of estimates of CO2 net ecosystem exchange (NEE), gross primary productivity (GPP), evapotranspiration (ET), and for the first time a novel, fully data-driven global transpiration product (ETT), at high spatial (0.05°) and temporal (hourly) resolution. X-BASE estimates the global NEE at −5.75 ± 0.33 Pg C yr−1 for the period 2001–2020, showing a much higher consistency with independent atmospheric carbon cycle constraints compared to the previous versions of FLUXCOM. The improvement of global NEE was likely only possible thanks to the international effort to increase the precision and consistency of eddy covariance collection and processing pipelines, as well as to the extension of the measurements to more site years resulting in a wider coverage of bioclimatic conditions. However, X-BASE global net ecosystem exchange shows a very low interannual variability, which is common to state-of-the-art data-driven flux products and remains a scientific challenge. With 125 ± 2.1 Pg C yr−1 for the same period, X-BASE GPP is slightly higher than previous FLUXCOM estimates, mostly in temperate and boreal areas. X-BASE evapotranspiration amounts to 74.7×103 ± 0.9×103 km3 globally for the years 2001–2020 but exceeds precipitation in many dry areas, likely indicating overestimation in these regions. On average 57 % of evapotranspiration is estimated to be transpiration, in good agreement with isotope-based approaches, but higher than estimates from many land surface models. Despite considerable improvements to the previous upscaling products, many further opportunities for development exist. Pathways of exploration include methodological choices in the selection and processing of eddy covariance and satellite observations, their ingestion into the framework, and the configuration of machine learning methods. For this, the new FLUXCOM-X framework was specifically designed to have the necessary flexibility to experiment, diagnose, and converge to more accurate global flux estimates. 
    more » « less
  5. null (Ed.)
  6. Biodiversity-ecosystem functioning (BEF) research grew rapidly following concerns that biodiversity loss would negatively affect ecosystem functions and the ecosystem services they underpin. However, despite evidence that biodiversity strongly affects ecosystem functioning, the influence of BEF research upon policy and the management of ‘real-world’ ecosystems, i.e., semi-natural habitats and agroecosystems, has been limited. Here, we address this issue by classifying BEF research into three clusters based on the degree of human control over species composition and the spatial scale, in terms of grain, of the study, and discussing how the research of each cluster is best suited to inform particular fields of ecosystem management. Research in the first cluster, small-grain highly controlled studies, is best able to provide general insights into mechanisms and to inform the management of species-poor and highly managed systems such as croplands, plantations, and the restoration of heavily degraded ecosystems. Research from the second cluster, small-grain observational studies, and species removal and addition studies, may allow for direct predictions of the impacts of species loss in specific semi-natural ecosystems. Research in the third cluster, large-grain uncontrolled studies, may best inform landscape-scale management and national-scale policy. We discuss barriers to transfer within each cluster and suggest how new research and knowledge exchange mechanisms may overcome these challenges. To meet the potential for BEF research to address global challenges, we recommend transdisciplinary research that goes beyond these current clusters and considers the social-ecological context of the ecosystems in which BEF knowledge is generated. This requires recognizing the social and economic value of biodiversity for ecosystem services at scales, and in units, that matter to land managers and policy makers. 
    more » « less
  7. A large body of research shows that biodiversity loss can reduce ecosystem functioning. However, much of the evidence for this relationship is drawn from biodiversity–ecosystem functioning experiments in which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured. This random assembly has led some ecologists to question the relevance of biodiversity experiments to real-world ecosystems, where community assembly or disassembly may be non-random and influenced by external drivers, such as climate, soil conditions or land use. Here, we compare data from real-world grassland plant communities with data from two of the largest and longest-running grassland biodiversity experiments (the Jena Experiment in Germany and BioDIV in the United States) in terms of their taxonomic, functional and phylogenetic diversity and functional-trait composition. We found that plant communities of biodiversity experiments cover almost all of the multivariate variation of the real-world communities, while also containing community types that are not currently observed in the real world. Moreover, they have greater variance in their compositional features than their real-world counterparts. We then re-analysed a subset of experimental data that included only ecologically realistic communities (that is, those comparable to real-world communities). For 10 out of 12 biodiversity–ecosystem functioning relationships, biodiversity effects did not differ significantly between the full dataset of biodiversity experiments and the ecologically realistic subset of experimental communities. Although we do not provide direct evidence for strong or consistent biodiversity–ecosystem functioning relationships in real-world communities, our results demonstrate that the results of biodiversity experiments are largely insensitive to the exclusion of unrealistic communities and that the conclusions drawn from biodiversity experiments are generally robust. 
    more » « less